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ABSTRACT

One of the major difficulties in attempting to apply known
queueing theory results to real problems is that almost always
these results assume a time Stationary Poisson arrival process,
whereas in practice the actual process is almost invariably
nonstationary. ~,g~rr$~his paper~~~ considers single server in-
finite capacity queueing models in which the arrival pro

~~
sL.

~~L~~~9Ais a nonstationary process with an intensity function A(t) ,
which is itself a random process.,~~’WE U ~’pose—tI~et ~he

average value of the intensity function exists and is equal to
some constant, cal)’11~ ~ , with probability 1.

e
1
~
e- aake--*-.-~

eeJ.ee
~
t1re--eeA the effect that the closer [A(t),t~~~03

is to the stationary Poisson process with rate X~ihen the S~ta11er
is the average customer delay, and then Me-.~e~iL~~,~he conjecture 5
in a special case.

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

4 1 ~~cs~z~ LiI~- 
~~~~~~~~~~~~ 



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

AVERAGE DELAY IN QUEUES WITH NONSTAT IONARY POISSON ARRIVALS

by

Sheldon M. Ross

1. THE CONJECTURE

Consider a single server , infinite capacity, queueing model in

which the arrival process is a nonstationary Poisson process with

intensity function A(t )  , t > 0  ; where (Jt(t) , t > 0 ]  is itself a

stochastic process. We suppose that [A (t),t > 03 is such that

iimfA(8)d8 A (say)

exists and is constant with probability 1. The above would follow, for

instance, if (A(t) ,t > 0] were a regenerative process with finite mean

regeneration time T • In this case A would be given by (see (2])

A = E[fA(s)ds]
,
/
”E[T]

In addition we suppose that the successive service times are independently

chosen from some service distribution G satisfying

E[S2] ~ fx
2dG(x ) <

and

E[S] ~ fxdc (x ) < 1/A

The order of service is “first come first served.”

Let us denote by d the average amount of time that a customer spends

waiting in queue. We then make the following conjecture concerning d
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Conjec ture:

d > 
AE(S2]

— 2(1 — AE[S] )

A E S 2It should be noted that 2(1 — XE[STY would be the value of d if the

arrival process was a stationary Poisson process with rate A

In fact, not only do we conjecture the above, but we also believe

that the “closer {A(t),t 01 is to the stationary process with rate

A ~ then the smaller d is. For example suppose that {A(t),t > O}

is a 2—state continuous time Markov chain alternating between the states

A1 
and A2 and suppose that the time it spends in state A~ during

each visit is an exponential random variable with rate ca
1 , 

i 1,2

Let d(c) denote the average customer delay for this model. It should

be noted that the average arrival rate A , given by

~ 
+

is independent of the constant c which regulates how fast the arrival

rate changes between its possible values. Intuitively the larger c is

the “more stationary” the arrival process is and thus we conjecture that

d(c) is a decreasing function of c

and

A E(S2]u r n  d(c) — 2(1 — A E(S])

~~~~~~~~~ _ _  _ _ _
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3

We have only been able to prove the above conjecture in the special

case A 2 — 0 . Before presenting this result, however, we need the

following preliminary results on GI/G/l queues.
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2. A PRELIMINARY RESULT MD A COUNTEREXAZ4PLE

For any 2 probability distributions F and C we say that F < G
v

if

ff(x)dF(x) <ff(x)dG(x)

for all increasing convex functions.

Some easily derived properties of this ordering are:

1. F < G if and only if
V

f(l - C(x))dx > f(l  - F(y))dy for all a

-- 
t 2. If F

1 
< G

1 
for i — 1,2, then F

1 
* F2 < G

1 * C2 , where *

denotes convolution.

3. If fxdF(x) — fxdG(x) then F < G if

ff(x)dF(x) cff(x)dG (x) for all convex functions f

If X and Y are random variables then we say that X < Y if
V

their distributions satisfy this ordering.

Remark:

If E(XJ — E[Y] then X < Y intuitively means that X has less
v

variability than Y .



‘__ ‘
~
•_“___ _ _ _

- _ - _
~~p~~

_,—_-._-_-_--...___-_---_ __ -_ _ _

I,-

5

We shall use the usual notation F/G/l to describe the queueing system

in which the arrival process is a renewal process with interarrival dis-

tribution F and there is a simple server having service distribution G

The following result was proven by Stoyan [ 2].

Proposition 1:

Consider the 2 queueing systems F/G/l and F1/G1/l. If F < F1 and

G < C
1 

and fxdF(x) m fxdF
1(x) then D < D 1 , where D (Di) is the

limiting distribution of delay in the system F/C/i (F
1/C1/1).

The above can be proven by showing that D~ < D1 where D and B1

represent the delays in queue of the nth customers of the respective models.

This is shown by induction on n , by using properties 2 and 3 (which implies

that if X < Y and EEX) ElY) then —x < _
~~
) 

and the identity

Dn+l max [0~D~ + U )  ,

where

11 = nth service time — nth interarrival time.
n

Remark:

It is perhaps surprising that the analogue of Proposition I does not

hold when there is more than one server. To best understand the forthcoming

counterexemple first consider 2 two—server queueing systems, the servers

of the first system having constant service time of 1 unit, and the servers

of the second system having service times that are either 0 or 2 — each

possibility having probability 1/2. Suppose that in both systems customers

= 
______ 

A

4- sA~~~~ ~~~
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arrive in batches of size 3, with the times between each batch being large.

Then it is easy to see that the average delay in the first (constant)

system is 1/3 whereas it is 1/6 in the second (more variable) system.

The above example yields a counterexample even when we require the

arrival process to be a renewal process. To see this suppose that the

arrival process is a renewal process with interarrival times X~ where

0 with probability c
x-

large with probab ility 1 — C .

Hence in this renewal arrival process the customers will arrive in batches

of random size. As batches of size greater than 3 occur much more in—

frequently than those of size 3 (the probabilities being versus

c2(i — t )J , it is clear from the preceding argument that average customer

delay is greater in the constant service model. 

~—~~~~~ - - ~ 
~~~~~~~~~~~~~~~
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3. PROOF OF THE CONJECTURE WHEN A
2 

= 0

Consider the infinite capacity single server model of Section 1 where

A(t) alternates between and X~ , spending an exponential amount of

time with rate ca~ during each visit to , i 1,2 . Let D(c) denote

the limiting distribution of customer delay in this system, and let d(c)

denote the mean of this distribution.

Proposition 2:

If A 2 = 0 then D(c
1
) < D(c~ ) whenever c

1 
> c2 , and thus d(c)

is decreasing in c

Proof:

It is easy to see that when A 2 = 0 the arrival process is a renewal

process. Let X~ denote an arbitrary interarrival time of this renewal

process. We’ll prove the proposition by showing that Xc 
< X  when

l v  ~2

< c
1 . To show this let M denote an exponential random variable with

rate A
1 , 

and let N denote a random variable which, conditional with
C
l

M has a Poisson distribution with mean c
1
ct
1
(M) . Also let V~ , I > 1

denote independent (of themselves and of all the other random variables

defined above) exponential random variables having rate a2 . Then using

the notation X Y to mean that X and Y have the same probability

distribution , we have the following

(3.1) X ~~M +~~~~+ •.. + ’ .
c~, c

1 
c1

_________________________________________________
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1~ 
The above follows by interpreting E as the total amount of time the

A(t) process spends in its A
1 

phase during an interarrival period ;

N can be Interpreted as the number of changes from A
1 

to A~ that

occur during this Interarrival period ; as V
1
/c
1 as the time spent In

the A 2 phase during the Ith visit.

Now for c
2 

< C
1 

we have that

~N VNIl vi C 1(3.2) X ~ N + + ••  +
c2 C

2 
c2

where the I~ are independent (of each other and of all previously defined

- 
- random variables) and such that

(i with probability c
2/c1

j 
C

I 

I0 with probability 1 — —
C

- 
- Equation (3.2) is justified by the same argument as used in (3.1) along

with the fact that if each of a Poisson number of events is Independently

counted with probability p then the number of counted events is also

Poisson.

Now it Is straightforward to check that

and thus (using property 2) we see that



r~~ 
‘
~
‘: 
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v 
VN c

E f M +— 1 + ’~~~+ ~ I M ,N
L \ c

1 
C
1/  

C
1

1/ ~N 
V
N \

< E I f(M + 
~l~l + ... + 

~ 1 ~l J j  M ,N
— L\  C

2 
C

2 / C
1

for all increasing convex f . It now follows from (3.1) and (3.2) by

taking expectation of both sides of the above inequality, that

x < x
C — Cl v  2

and the result follows from Proposition l U

Before obtaining the limiting value of d(c) let us first compute

the mean and variance ot the interarrival time X . From (3.1) we have

N
E[X I M N ]  = M + — ~—

C c ca

N
Var[X I M ,N ]  =

c c 2(ca2)

and thus

1 
a
1E[X ] — — +c A1 A
1
ct
2

a f N i
Var(X ] 1 +V a r J M + _ _ S~~Ic 2 i cczA

1
ca
2 L 2

a I a c M l I a M i1 + E I  I + V a r I M + — ~-—I
X
1

CcZ~ L~~ 2
2
i L ct2 j

- 

= 

A~~~~~~~ 

+ 

A
i

Ca
~ 

+ 

~~ ~~~~: 

)2
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That is,

(3.3) ElX~
] —

2a1 1(3.4) Var[X ] a 
2 + A

where

a X
A —  2 1

We are now ready to show tha t as c -
~ d(c) converges to its corre-

sponding value in the stationary case.

Proposition 3:

X E(S 2)lim d(c) 2(1 — XE[S])

where S represents an arbitrary service time random variable.

Proof:

Marshall 1 3 ] showed that for Ct/C/i queues

Var[S] + Var[X 3 + (E(S] — E[X ])
2 2

(3.5) d(c) 2( E[ X ] — E[S ])  — 

—

where I is the length of an idle period . Now an idle period is a mixture

of a random variable having the same distribution as X and a random
C

variable having the same distr ibution as the sum of X~ and an independ ent

exponential random variable with rate ca2 (the probabilities for this

mixture being the respective probabilities that an Idle period starts 

~~~~ -.-~-~~~~~ rnC. ~- - 
~~~~~~~~~~~~ - St~~
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in a A
1 

or a A 2 phase). Hence, it follows that

(3.6) x < I < X +U
C —  — C

St St

where < means stochastically smaller than and U is an exponential
St

random variable with rate cu 2 independent of the interarrival random

variable X~ . Now, from the representation (3.6) and (3.3) and (3.4)

we see that

lim E(I] =~~~~

lim Ef 12] = him E[X~]

2
a — .

A

Letting c approach infinity in (3.5) and substituting the above yields

the result. U

Remark:

In this section we have supposed that the fA(t),t > 0) process

alternates between the values A
1 

and A 2 0 , spending an exponential

amount of time with rate ca2 in the A 2 0 phase. However all proofs

would go through In an identical fashion if we supposed that the time in

the 0—phase had a distribution G
~ 

where G
~
(x) a G(cx) for some arbitrary

distribution C having finite variance. On the other hand, however, it

is unfortunate that, to maintain renewal arrivals, the assumption of

• exponential times in the A
1
—phase is essential for our approach.

- - -

.

- ~~~~~
- -T

~~~~~
-
~~~~~~ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~
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4. HEURISTICS AND FUTURE WORK

One of the main reasons for our belief in the conjecture of Section 1

is based on the following intuitive argument: Suppose that (N(t),t > 0]

is a nonhomogeneous Poisson Process with intensity function A (t)

and suppose that, for some positive constant A

1~~~fA (
t)dt 

= A

0

In considering processes satisfying the above as possible arrival

processes for a waiting line model we should first note that for large T

they all have roughly the same distribution for the number of arrivals

by time T — namely Poisson with mean roughly AT . The difference

arises In the conditional distribution of the arrival times. Specifically,

given that n arrivals have occurred by time T , these n arrival

times have the same joint distribution as do n independent random

variables chosen from the conmion distribution F where -

fx t)dt~/fx(t)dt s

F(x) =

1 s > T .

Now if we had to choose a Poisson (with mean AT) number of arrival

times according to some distribution concentrated over [O ,T) so as

to minimize average customer waiting time then, intuitively, it seems

reasonable that we would want that distribution which does not “favor”

-  ±~~~~~~~~ _~~~~~~~~~
—

~~~~
- - ~~~~~~

_

. 
-- := 

~~~~. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

_

~~~~~~~~

_

~~~~~~~~~~~~~
_
~~~~~

— 
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13

any particular subinterval but rather has in some sense the most uniform

spread. In other words we would want the uniform distribution (which

has maximal entropy among all distributions concentrated on [O,T)).

But it is precisely the uniform distribution which obtains when

A(t) A .

So far due to analytical difficulties we have only been able to

verify the conjecture in the special cases considered in this paper .

One other possibility which may be more analytically tractable would be

to consider finite capacity models. By supposing that the service dis-

tribution is exponential we can analyze such models as finite state

continuous time Markov chains. In such finite capacity models the relevant

quantity would no longer be the average time in queue but rather it would

be the percentage of customers lost to the system due to their arrival

when the system was at maximum capacity. We conjecture that this percentage

of lost customers is greater than what it would be in the case of stationary

arrivals. 

—- - -- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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